Monday, February 18, 2013

A workshop, a webinar, and a question

There is a workshop on the 25th of February titled "Market turbulence; monetization; and universality" by Mike Lipkin at Columbia University that promises to be interesting to those traders who have a physics background. Mike is a former colleague of mine at Cornell's Laboratory of Atomic and Solid State Physics, and I fondly remember the good old days when we all hunched over the theory group's computers while day-dreaming of our future. Mike has since gone on to become an options market-maker at the American Stock Exchange and an Adjunct Associate Professor at Columbia. He published some very interesting research on the "stock pinning" phenomenon near options expirations, i.e. stock prices often converge to the nearest strike prices of their options just before expirations.

---

If we want to trade directly on various FX ECNs such as HotspotFX or EBS, perhaps because we want to run some HFT strategies, we will need to be sponsored by a prime broker. However, since the Dodd-Frank act has been in full force, no prime brokers that I know of are willing to take on customers with less than $10M assets. (I often feel that the CFTC's primary goal is to prevent small players like myself from ever competing with bigger institutions. Of course, their stated goal is to "protect" us from financial harm ....) The only exception may be CitiFX TradeStream ECN. Has any reader ever traded on this market? Any reviews or comments will be most welcome.

---

I am now offering an online workshop "Quantitative Momentum Strategies” to a select number of traders and portfolio managers. It will be conducted in real-time through Skype, and the number of attendees will be limited to 4. See here for more information.

Sunday, February 03, 2013

A stock factor based on option volatility smirk

A reader pointed out an interesting paper that suggests using option volatility smirk as a factor to rank stocks. Volatility smirk is the difference between the implied volatilities of the OTM put option and the ATM call option. (Of course, there are numerous OTM and ATM put and call options. You can refer to the original paper for a precise definition.) The idea is that informed traders (i.e. those traders who have a superior ability in predicting the next earnings numbers for the stock) will predominately buy OTM puts when they think the future earnings reports will be bad, thus driving up the price of those puts and their corresponding implied volatilities relative to the more liquid ATM calls. If we use this volatility smirk as a factor to rank stocks, we can form a long portfolio consisting of stocks in the bottom quintile, and a short portfolio with stocks in the top quintile. If we update this long-short portfolio weekly with the latest volatility smirk numbers, it is reported that we will enjoy an annualized excess return of 9.2%.

As a standalone factor, this 9.2% return may not seem terribly exciting, especially since transaction costs have not been accounted for. However, the beauty of factor models is that you can combine an arbitrary number of factors, and though each factor may be weak, the combined model could be highly predictive. A search of the keyword "factor" on my blog will reveal that I have talked about many different factors applicable to different asset classes in the past. For stocks in particular, there is a short term factor as simple as the previous 1-day return that worked wonders. Joel Greenblatt's famous "Little Book that Beats the Market" used 2 factors to rank stocks (return-on-capital and earnings yield) and generated an APR of 30.8%.

The question, however, is how we should combine all these different factors. Some factor model aficionados will no doubt propose a linear regression fit, with future return as the dependent variable and all these factors as independent variables. However, my experience with this method has been unrelentingly poor: I have witnessed millions of dollars lost by various banks and funds using this method. In fact, I think the only sensible way to combine them is to simply add them together with equal weights. That is, if you have 10 factors, simply form 10 long-short portfolios each based on one factor, and combine these portfolios with equal capital. As Daniel Kahneman said, "Formulas that assign equal weights to all the predictors are often superior, because they are not affected by accidents of sampling".